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Abstract

We discuss the recently introduced multilevel algorithm for the steady-
state solution of Markov chains. The method is based on an aggregation prin-
ciple which is well established in the literature and features a multiplicative
coarse-level correction. Recursive application of the aggregation principle,
which uses an operator-dependent coarsening, yields a multi-level method
which has been shown experimentally to give results signi�cantly faster than
the typical methods currently in use. When cast as a multigrid-like method,
the algorithm is seen to be a Galerkin-Full Approximation Scheme with a
solution-dependent prolongation operator. Special properties of this prolon-
gation lead to the cancellation of the computationally intensive terms of the
coarse-level equations.
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1 Introduction

Markov chains describe discrete-state stochastic processes in which the prob-
abilities of transitions between states are a function solely of the current
state of the chain { the so-called memoryless property. Since this property is
approximately satisi�ed by many physical systems, Markov chains are used
widely in stochastic modeling. We will draw our examples in this paper from
the performance and reliability modeling of computer systems. It is common
to distinguish between continuous time Markov chains (CTMCs), in which
transition coe�cients between states are interpreted as exponentially dis-
tributed rates or delays, and discrete time Markov chains (DTMCs), where
they are treated as probabilities. In the latter case, the Markov chain is
described by a stochastic matrix. In the steady-state case, CTMC problems
can be converted via a simple transformation into problems described by a
DTMC. Ultimately, the Markov chain represents a linear system of equations
which is usually sparse and often extremely large.

The goal of modeling computer systems is to derive information on per-
formance, measured typically as job throughput or component utilization,
and availability, de�ned as the proportion of time a system is able to per-
form a certain function in the presence of component failures and possibly
also repairs. Various abstract modeling tools for computer systems are in
widespread use today, the most important of which are generalized stochas-
tic Petri nets (GSPNs) [1] and queueing networks [6]. When the memoryless
condition is satis�ed, such models are equivalent to Markov chains, and it
is required to solve the Markov chain in order to derive useful information
about the abstract model.

Unfortunately, the number of states of the Markov chain (and thus the
dimension of the linear system) grows extremely quickly as the complexity
of the model is increased. There is one unknown for each state that the
model may be in - a number that is subject to a combinatorial explosion.
Thus, the Markov chains that have to be solved even for relatively coarse
computer models may have tens or hundreds of thousands of states. Apart
from their size, one further drawback of typical Markov chains is the presence
of coe�cients on a wide range of scales. Consider, for example, a reliability
model of a computer, in which the rate of component failure may be only once
in every few months, whereas the rates associated with the normal behaviour
of the system are measured in kHz and MHz.
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The resulting large systems of equations must be solved numerically us-
ing an iterative scheme. Typical iterative methods in use in the computer
modelling community are the Power, Gauss-Seidel (GS), and successive over-
relaxation (SOR) algorithms. Surveys of currently used methods may be
found in [12, 8]. All of these methods have the drawback that they may
require many iterations to reach an accurate solution, particularly if the sys-
tem is large or if coe�cients of strongly varying magnitude are present. This
can lead to unacceptably long computation times.

In this paper, we will consider a multilevel (ML) solution algorithm for
Markov chains, which was introduced in [5]. The method is based on the
principle of iterative aggregation and disaggregation, a well-established nu-
merical solution technique for Markov chains [7, 16, 14]. This principle uti-
lizes a coarse-level level correction that is multiplicative, rather than addi-
tive, i.e. newly obtained coarse-level values are used as a factor by which
�ne-level approximations are rescaled. Furthermore, the aggregation itself,
or the coarsening strategy is operator-dependent, in that locally strongly
coupled states are mapped together.

Algebraic multigrid (AMG) [13] is considered to be an attractive solution
strategy for the systems of equations that are unstructured and which may
have strongly varying coe�cients. These are characteristic properties of the
Markov chains that typically occur in practice. However, as far as we know,
until now there has been no AMG approach to solving Markov chains.

It will be shown that the multilevel method is equivalent to an algebraic
multigrid scheme which uses the Galerkin method for the coarse level oper-
ator and is of Full Approximation Scheme (FAS) type. When viewed as a
multigrid scheme, the novelty of the multilevel method is seen to stem from
the de�nition of the prolongation operator, which is solution-dependent and
yields the identity operator when combined from the left or from the right
with the restriction operator. This has two interesting e�ects: the right-hand
side of the coarse level equations degenerates into a simple restriction of the
�ne-level right-hand side, and the coarse level operator is solution-dependent
and therefore changes from iteration to iteration, even though the Markov
chain problem itself is linear.

In the following section, we describe the problem and the aggregation
equations. The multilevel method is described in section 3. In section 4,
the multilevel method is rewritten and interpreted as a multigrid scheme. In
section 5 experimental results for Markov chains arising from a well-known

2



multiprocessor reliability model and from a simple queueing network are
presented, showing the superiority of the method over the standard Gauss-
Seidel scheme. The �nal section summarizes the paper.

2 Problem Description and Aggregation

Equations

Consider an irreducible Markov chain consisting of n states s1; s2; : : : ; sn.
Denote the unknown vector by u, where ui is the steady-state probability
of the Markov chain being in state si. In order to facilitate the notation
for the multilevel scheme, we use indices l, l � 1, etc., to indicate levels of
aggregation of the Markov chain. The original Markov chain is designated
to be at level l = lmax.

We then have to solve the system of equations de�ned by the Markov
chain

Alul = 0 ; (1)

with the additional condition

nX
i=1

ul
i
= 1 ;

where l = lmax. Note that, in the discrete time case, equation (1) is usually
written as

�P = � (2)

where � = (ul)T and P = (Al)T + I, which is the so-called transition matrix.
Equation (2) de�nes the solution of the Markov chain in terms of an eigen-
value problem, and since P is a stochastic matrix, we know that it possesses
the unique maximal eigenvalue � = 1. We will, however, use the notation of
equation (1) throughout, reserving the symbol P for the prolongation oper-
ator. In the continuous time case, equation (1) is usually written

�Q = 0 ;

where Q = (Al)T . Matrix Al has zero column sums and all o�-diagonal
coe�cients are non-negative, making it a singular M-matrix of rank n � 1.
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Figure 1: Aggregation of Markov Chains

A coarser representation of the Markov chain described by matrix Al may
be obtained by aggregation. This amounts to creating a new Markov chain
described by a matrix Al�1 with the vector of state probabilities ul�1, each
of whose N states S1; S2; : : : ; SN is derived by lumping together a number
of states of the original system. Aggregation is motivated by probabilistic
arguments which are illustrated in �gure 1. The �gure shows four states
s1; s2; s3; s4 of a Markov chain, where the probability of the chain being in
each of the states is given by u1; u2; u3; u4, respectively. In addition, a transi-
tion from s1 to s3 with the probability A31 is assumed. The probability of the
chain being in either state s1 or state s2 is then given by u1+u2, and we may
replace this pair of states by the corresponding \macro-state" S1, and simi-
larly for states s3 and s4. The transition A31 is then mapped to a transition
between macro-states S1 and S2 with a probability value of A31u1=(u1+ u2),
which represents the original transition probability multiplied by the relative
probability of the Markov chain being in s1, given that it is the macro-state
S1. This argument allows us to generate a coarse level (aggregated) system
from our original Markov chain.

In the following, we will use the terms �ne level and coarse level to refer to
Markov chains, where the latter is obtained by aggregation from the former.
The relation si 2 SI signi�es that the �ne level state si is mapped by the
aggregation operation to the coarse level state SI . A set of �ne states mapped
to a common coarse level state fsi : si 2 SIg will be referred to as an
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aggregate.
The matrix Al�1 of the aggregated system is thus de�ned as follows :

Al�1
IJ

=

P
sj2SJ

 
ul
j

P
si2SI

Al

ij

!
P

sj2SJ

ul
j

(3)

This is the classical aggregation matrix. Note that the matrix Al�1 is a
function not only of the �ne level matrix Al, but also of the �ne level solution
vector ul. It will be shown in section 4 that this coarse level matrix is
equivalent to the Galerkin operator in the multigrid context, with special
intergrid transfer operators.

It is well-known that this aggregation strategy propagates the Markov
chain property to the coarser level [15], i.e., the matrix Al�1 is also an irre-
ducible Markov chain. This yields the aggregated equation in the unknown
ul�1:

Al�1ul�1 = 0
NX
I=1

ul�1
I

= 1 :

It can then be shown that the solution of the coarse system satis�es

ul�1
I

=
X
si2SI

ul
i

;

i.e., the probability of being in a coarse level state is the sum of the prob-
abilities of being in any of its constituent �ne-level states. We will use the
aggregation equation as a basis for the multilevel method, whereby we ap-
proximate the exact solution values ul in (3) by values from the current
iterate.

The coarse-levelmatrix depends on the �ne-level solution, and must there-
fore, in the context of an iterative method, be approximated by using the
values of the current iterate. More precisely, Al�1 is a function of the relative
values of the �ne-level nodes with respect to the values of their aggregates.
These are the probabilities of the Markov chain being in a �ne-level state
conditioned on being in the aggregate state.
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The motivation for the multilevel method lies in the observation that, if
it is possible to obtain improved values for the relative probabilities of �ne-
level states in a common aggregate, then an improved coarse-level system
can be set up and solved, the solution of which represents the probabilities
of the aggregates. The argument can, of course, be applied recursively. We
choose to form small aggregates composed of strongly-coupled neighboring
states, as the Gauss-Seidel iteration is able to achieve an improvement in the
relative probabilities of such states e�ciently. We refer to the Gauss-Seidel
method in this context as a \smoother", although its role here is somewhat
di�erent. This motivation parallels that of multigrid: high-frequency errors
are smoothed out on the �ne level, whereas low-frequency errors are reduced
by the coarse-level correction.

The solution values obtained on the coarser level are used to rescale the
values within each aggregate by the same factor. This rescaling guarantees
that the �ne-level solution remains a probability vector, i.e., the coarse level
correction produces new �ne-level values in the range [0; 1].

The coarse level Markov chain thus derived forms the basis of the
well-known iterative aggregation-disaggregation algorithms [14] in which an
aggregate-wise block Gauss-Seidel or block Jacobi iteration on the �ne level
alternates with a coarse level correction. These methods bear a strong resem-
blance to domain decomposition methods for partial di�erential equations.

In contrast to these \two-level" schemes, we will develop a multilevel
solution method by recursive application of aggregation where the problem
de�ned at each level represents a Markov chain. The converged solution value
at each coarse level state is the sum of the converged solution values of its
constituent �ne level states. It is to be hoped that similar improvements in
performance over single-level iterations such as Gauss-Seidel can be obtained
as is the case for multigrid and elliptic partial di�erential equations. The
improvement will come from choosing small aggregates, for which it will be
su�cient merely to improve the relative probabilities using a few Gauss-Seidel
sweeps, rather than to use large aggregates consisting of many unknowns,
and to solve for these values, which can be extremely expensive. In addition,
the recursive application of the aggregation will allow us capture relative
probabilities at all scales.

6



3 Multilevel Solution Algorithm

In this section, we recall the recently introduced multilevel algorithm [5],
which is based on a recursive aggregation of the Markov chain to obtain
approximations of successively smaller dimensions. The algorithm passes
through all levels of the hierarchy of chains in a multigrid-style V-cycle. The
coarser level equations are the aggregation equations of section 2.

We adopt the following abbreviations for elementwise multiplication and
division on vectors in IRm:

a = b � c , ai = bi � ci; 1 � i � m

a = b=c , ai = bi=ci; 1 � i � m

In the following, ~u represents an intermediate vector, �u an approximation
to the solution vector, and u� a correction vector. We denote by (ul)(i) the
i-th iterate. One iteration of the two-level version of the ML algorithm, using
one relaxation sweep on the �ne level, is given by the following sequence of
steps.

1. Perform one Gauss-Seidel relaxation sweeps on the �ner level, which
we denote by

~ul = GS((ul)(i))

2. Restrict the current approximation to the solution to the coarse level,
where the restriction operator R is de�ned as summation of the values
of �ne-level states mapped to a common coarse state:

~ul�1 = R(~ul) , ~ul�1
I

=
X
si2SI

~ul
i
:

R can be represented by a N � n matrix of zeros and ones.

3. Compute the coarse level matrix ~Al�1 as an approximation to that of
equation (3) using the current values of the solution vector:

~Al�1
IJ

=

P
sj2SJ

 
~ul
j

P
si2SI

Al

ij

!

~ul�1
J

: (4)
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4. Solve the coarse Markov chain problem for �ul�1:

~Al�1�ul�1 = 0 ;
NX
I=1

�ul�1
I

= 1 : (5)

5. Compute the coarse-level correction as the ratio of new coarse level
solution and restricted �ne-level solution. In this step, we compute the
factor by which the probability of each aggregate must be corrected:

(ul�1)� = �ul�1=~ul�1 :

6. Compute the �ne-level correction as a prolongation �P of the coarse-level
correction vector. All �ne level states of an aggregate are corrected by
the same factor:

(ul)� = �P ((ul�1)�) , (ul)�
i
= (ul�1)�

I
si 2 SI :

�P can be represented by a n�N matrix of zeros and ones.

7. Apply the �ne-level correction, i.e., rescale the aggregate probabilities
to obtain the new i+ 1th iterate:

(ul)(i+1) = �ul = ~ul � (ul)� : (6)

In this two-level form, the method is similar to the iterative aggregation-
disaggregation (IAD) method of Koury, McAllister and Stewart [7], except
that a pointwise, rather than a block Gauss-Seidel, approach is used. The
multilevel algorithm is obtained by recursive application of the two-level al-
gorithm to obtain a solution to the aggregated equation (5). It is described
in algorithmic form in �gure 2. The coarse level l�1 and �ne level l, between
which the operators �P and R map, are identi�ed by appropriate indices. We
allow in general the possibility of applying GS �1 times at each level as a
pre-smoothing step and �2 times as a post-smoothing step.

The multilevelmethod is identical in structure { and similar in motivation
{ to a standard multigrid V-cycle. The principal di�erence resides in the
derivation of the �ne-level correction from the coarse level solution vector.
Whereas here the correction is a multiplication by the prolonged ratio of new-
to-old coarse level solutions, in standard multigrid it is the addition of the
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procedure ml(l)

if (l = 0)
solve Al�ul = 0

else

~ul = GS�1(�ul)
~ul�1 = Rl�1;l(~ul)
Compute Al�1

ml(l� 1)
(ul�1)� = �ul�1=~ul�1

(ul)� = �Pl�1;l((ul�1)�)
�ul = ~ul � (ul)�

�ul = GS�2(�ul)
return

Figure 2: Multilevel Algorithm

prolonged di�erence between these two vectors. However, in the following
section, by absorbing the current approximation vector into the prolongation
operator, we can interpret the ML method as a multigrid scheme.

As is the case for algebraic multigrid [13], we use an aggregation strategy
that maps strongly-coupled �ne-level states to a common coarse level state.
In general, aggregation is pairwise, but aggregates consisting of three or four
states, or even as few as one state, are permitted if the coe�cients so de-
mand. When the Markov chain contains strongly di�ering rates - which is
somewhat analogous to the presence of strong local convection or anisotropy
in PDEs - the convergence rate of the ML scheme is sensitive to the aggrega-
tion strategy. We use a greedy algorithm to determine the aggregates whose
complexity is linear in the number of edges of the Markov graph.

4 Interpretation as a multigrid method

The multilevel method is based on the iterative aggregation-disaggregation
strategy, which dates at least from 1975 [16] and whose equations are derived
in a natural way by probability arguments. In this section, we will show that
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the scheme can be written as a classical algebraic multigrid algorithm and
point out the particular choices of multigrid components that the ML scheme
represents.

We begin by considering the multiplicative coarse level correction as the
composition of steps 5, 6, and 7 in the algorithm of section 3. This correction
is de�ned by

�ul
i
= ~ul

i
�
�ul�1
I

~ul�1
I

si 2 SI ; (7)

where the new coarse level solution is used to scale the �ne-level solution
values in each aggregate by the same factor. The coarse grid correction
in multigrid is, however, generally written as an additive correction, so we
rewrite equation (7) as

�ul
i
= ~ul

i
+ (�ul�1

I
� ~ul�1

I
)
~ul
i

~ul�1
I

si 2 SI :

Thus, the scaling of the �ne solution by the prolongation of the ratio of new
and old coarse level solutions is equivalent to an additive correction using
the prolonged di�erence between the two coarse vectors scaled by a solution-
dependent factor ~ul

i
=~ul�1

I
. This strategy ensures that the correction step will

automatically produce new �ne-level solution values that remain bounded in
the interval [0; 1]. In addition, we observe that the relative probabilities of
the states within each aggregate are una�ected by the coarse level correction.

Observation 1 We may write the ML method with an additive, rather than

multiplicative, correction, using the prolongation operator P given as

P = D �P ;

where �P is the standard multigrid prolongation

�P = RT

and D is de�ned by

D = diag

 
~ul
i

(R~ul)I

!
:
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Thus, the prolongation operator is equivalent to the standard multigrid
prolongation operator multiplied by the solution-dependent diagonal matrix
D. Strictly speaking, we should therefore represent the dependency of P on
~ul by writing P~ul , but we generally omit the su�x in the interest of simplicity.

We now make some observations on the thus-de�ned multilevel algorithm.

Observation 2 The prolongation and restriction operators satisfy the fol-

lowing conditions:

P 6= RT ; (8)

PRul = I lul ; (9)

RPul�1 = I l�1ul�1 ; (10)

where I l, I l�1 are the identity operators on levels l and l � 1, respectively.
Proof of (9):

(PRul)i =
ul
iP

si2SI

ul
i

X
si2SI

ul
i

= ul
i

:

2

Properties (8) { (10) are in contrast to the usual case in multigrid. Prop-
erty (9) has, perhaps, the most interesting consequence, as Observation 5
below will show.

Observation 3 The coarse level system de�ned by Al�1 from (3) is equiva-
lent to the Galerkin approximation to Al de�ned by

Al�1 = RAlP : (11)

Proof: We may compute the (IJ) coe�cient of the matrix RAlP as the

I-th element of the vector RAlPel�1 where el�1 = (0; : : : ; 0; 1; 0; : : : ; 0)
and the 1 is in the J-th position. This gives

(RAlPel�1)I =
X

sj2SJ

0
BB@ ul

jP
sj2SJ

ul
j

X
si2SI

Al

ij

1
CCA ;

which is equivalent to (3).
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From Observations 1 and 3, we draw the following:

Observation 4 The ML method is equivalent to a certain FAS Galerkin

multigrid iteration.

Some of the above relationships have been noted by previous authors;
Haviv [4] discusses various iterative aggregation schemes, pointing out (9)
and (11), and Krieger [8] points out the relationship between IAD schemes
and two-level multigrid algorithms.

If we consider applying the equivalent multigrid algorithm to a non singu-
lar problem with a non-trivial right hand side, such as a discretized Poisson
equation, we obtain the following FAS-Galerkin coarse level equation:

RAlP (�ul�1) = Rf l �RAl~ul +RAlPR~ul ; (12)

for which we may note the following.

Observation 5 Property (9) of the ML prolongation operator leads to can-
cellation of the second and third terms in the right hand side of (12), yielding
the vector Rf l which is constant and may be precomputed:

RAlP (�ul�1) = Rf l :

In traditional multigridmethods the coarse system is driven by the chang-
ing right hand side (the restricted �ne-level defect). For linear problems, the
coarse matrix is constant and may be precomputed. In the present method,
the situation is reversed: the forcing function is constant and successive
coarse solutions are driven by a changing system matrix. The computational
saving of the latter scheme in the evaluation of the right hand side is sub-
stantial: one �ne and one coarse matrix-vector product per iteration.

The convergence properties of the ML method will depend on the quality
of the approximation of the coarse solution. Since the coarse equations are
solution-dependent and vary from iteration to iteration, it is worthwhile to
ask how well the coarse matrix (4) approximates the converged matrix (3)
and, therefore, how close the computed solution �ul�1 can be to the converged
solution ul�1.

De�nition 1 We de�ne an approximation ~ul to the exact solution ul to be
smooth, if the relative magnitudes of all solution values within each aggregate
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are in error by no more than O(�):

~ul
iP

sj2SI

~ul
j

�
ul
iP

sj2SI

ul
j

� O(�) si 2 SI : (13)

Since aggregates are composed of neighboring �ne-level states, this de�nition
of smoothness is consistent with that of algebraic smoothness in the con-
text of algebraic multigrid [13]. The smoothing property (reduction of high-
frequency algebraic errors) is equivalent to achieving approximately correct
relative magnitudes of neighboring solution values. Recall that the quality
of the coarse level matrix (4) depends only on the relative, rather than the
absolute, sizes of the solution values in each aggregate.

Using the eigenvalue problem formulation of equation (1), where B =
(Al�1 + I)T , we write the coarse problem

Bul�1 = ul�1 : (14)

At any iteration of the ML method until convergence is reached, the coarse
matrix will di�er from its converged value. We write the matrix computed
during the ML iteration from ~ul as a perturbation B + � = ( ~Al�1 + I)T of
the converged value B. The approximate coarse system at any iteration is
therefore

(B +�)�ul�1 = �ul�1 : (15)

Note that � has the same sparsity pattern as B.

Observation 6 If (13) is satis�ed, then the error matrix � satisifes

� = O(�). Equations (15) and (14) yield

�ul�1 = ul�1 +O(�) : (16)

The coarse solution is therefore also in error by only O(�). The exact form
of the error term in equation (16) can be found in [9]. We conclude that
an algebraically smooth �ne-level approximation will yield a coarse system
whose solution is an acceptable approximation to that of the converged state.
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Figure 3: Simple Multiprocessor Example

5 Experimental Results

In computer modelling, Markov chains are seldom developed explicitly; their
size alone would in general make this an impractical task. Instead, more
abstract modelling paradigms are used, the most important of which are
queueing networks and stochastic Petri-nets. In order to demonstrate the
gain in e�ciency of the ML method over GS, we therefore solve Markov
chains de�ned indirectly via these modelling tools. We choose a stochastic
Petri-net model of a multiprocessor from the literature [1], a small queueing
network, a well-known queueing network model of a multi-user computing
system [15], and a stochastic Petri-net model of a multi-tasking operating
system that has recently appeared [3]. The derivation of Markov chains from
stochastic Petri-nets is described in [1, 11] and from queueing networks in
[6].

Figure 3 shows a multiprocessor system which consists of n processors Pr
1, Pr 2, : : :, Pr n, each with a private memory unit PM 1, PM 2, : : :, PM n, to
which they have direct access via a local bus. The processors communicate
via two common memory units CM 1 and CM 2. The processors compete
for access to the two common memory units via a global bus GB. Ajmone
Marsan, Balbo and Conte [1] give a GSPN model of this multiprocessor (the
structure of which is shown in �gure 4) which allows for the possibility of
failure and repair of the processors, the bus and the memory units. The
model allows computation of the loss of e�ective computational power of the
processors due to downtime and competition for the system resources.

Figure 5 shows the computational work of the GS and ML methods ap-
plied to this problem, where the numerical values of the parameters are taken
from [1]. We show the total number of millions of 
oating point operations
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Figure 4: GSPN Model of Multiprocessor System

needed to solve the problem as a function of problem size measured as the
number of processors in the model. The number of states of the Markov
chains varied from 91 (2 processors) to 3883 (10 processors). All problems
were solved to an accuracy of kA�uk1 < 1e� 10.

Comparing the GS and ML schemes, we see that, although these are
problems of very small size, the saving in computational e�ort of ML over
GS is quite dramatic: a factor of 27 for the smallest and of 109 for the largest
problems considered. It is also clear that the gap widens as the problem size
increases.

The SOR method, which is usually used as a solver in software tools for
stochastic Petri nets [2, 10], does not improve the situation for this problem,
because the optimum overrelaxation parameter is found to be one.

Figure 6 shows a small open queueing system consisting of three single-
server queues, as might typically be used in a computer performance model.
Server S1 with service rate 90 represents a CPU which receives jobs at a mean
rate of 10 from the outside world for processing. There is a 70% probability
that jobs leaving S1 may then leave the system. Servers S2 and S3 might
represent I/O devices with service rates 7 and 5, respectively. There is a 10%
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Figure 5: Computational work for GS (upper curve) and ML (lower curve)
to solve the Ajmone Marsan/Balbo/Conte problem.

chance that a job leaving S3 returns to S1 for further processing. The queues
have a �nite capacity c and reject incoming jobs when full. We assume that
job arrival times and service rates are exponentially distributed, allowing us
to model this system by a Markov chain.

For this problem, the Markov chain has a regular three-dimensional struc-
ture which is somewhat analogous to that of a �nite-element discretization
of a PDE. Each state of the chain may be characterized by the vector
(n1; n2; n3), where ni denotes the number of jobs in queue i, which may
also be interpreted as a coordinate index in the i-th dimension of the three-
dimensional \grid" of states. The transitions contained in the chain are the
following:

(n1; n2; n3) ! (n1 + 1; n2; n3)

(n1; n2; n3) ! (n1 � 1; n2; n3)

(n1; n2; n3) ! (n1 � 1; n2 + 1; n3)

(n1; n2; n3) ! (n1 � 1; n2; n3 + 1)

(n1; n2; n3) ! (n1 + 1; n2; n3 � 1)
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Figure 6: Queueing system test case

(n1; n2; n3) ! (n1; n2 � 1; n3)

(n1; n2; n3) ! (n1; n2; n3 � 1)

where 0 � n1; n2; n3 � c and transitions to states with negative-valued index
are disallowed.

The computational work, measured in millions of 
oating point opera-
tions, required by GS and ML to solve the queueing problem is shown in
�gure 7. For this problem also, ML is more than ten times faster than GS,
although the \sidelength" of the largest Markov chain considered is only 40.

Figure 8 shows the computational e�ort, measured as millions of 
oating
point operations carried out, for the solution of a computer multiprogram-
ming model which is due to Stewart [15] with the Gauss-Seidel and multilevel
methods. The model describes a computing system consisting of a CPU and
two I/O devices and the 
ow of jobs in this system that are initiated by
a number of users typing commands at terminals. We used the parameter
values as in [15]. This model is of nearly completely decomposable type, i.e.,
it is described by a matrix that is close to block diagonal. The problem is
scaled by increasing the number of jobs in the system. Already for 15 jobs,
where the Markov chain has 816 unknowns, the multilevel method is a factor
of 1083 more e�cient than Gauss-Seidel. The improvement grows with the
problem size.

Figure 9 shows numerical results for a Markov chain derived from a
stochastic Petri-net model of an operating system due to Greiner et al [3].
The model represents the state changes of processes in a computer with a

17



0

200

400

600

800

operations

�106

8 16 24 32 40

Queue capacity c

X
X

X

X

X

.............
.............

.............
............

.............
.............

.............
.............

.............
.............

.............
....
....
...
....
....
....
...
....
....
....
....
...
....
....
....
...
....
....
....
...
....
....
....
....
...
....
....
....
...
....
....
....
...
....
....
....
....
...
.....
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
.
..
.

X X X
X

X

...........................................................
....................................................................................

...........................
............................

..........................
...........................

............................
................

.............
.............

.............
..............

.............
.............

..............
.............

.............
.............

.........
.........
........
.........
.........
.........
.........
.........
.........
.........
.........
.........
........
.........
.........
.....

Figure 7: Computational work for GS (upper curve), ML (lower curve) to
solve the queueing problem.

multitasking operating system. The problem can be scaled by increasing
the number of jobs that are in the system simultaneously. On the left, the
computational e�ort of GS and ML, measured in millions of 
oating point
operations, is shown as a function of problem size. The performance im-
provement of ML is once again seen to increase with problem size; at 8 jobs
ML is 70 times faster than GS. On the right side of Figure 9, the convergence
factor is shown. The factor for ML is a constant 0.16 for all problems other
than the smallest, whereas that of GS deteriorates from 0.975 to 0.998 over
the interval.

6 Conclusions

We have discussed the recently introduced multilevel solution method for
the steady state analysis of Markov chains, an important class of problems
in the stochastic modelling of physical systems. The method is motivated as a
generalization of well-known iterative aggregation-disaggregation techniques
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Figure 8: Numerical Results for Interactive Multitasking Model. Upper
curve: Gauss-Seidel; Lower curve: Multilevel.

to include multiple levels.
It is shown that the algorithm is equivalent to an FAS multigrid method

with a Galerkin-style coarse grid operator and a solution-dependent prolon-
gation operator. The latter property of the scheme ensures that the coarse
grid correction produces solution values that are bounded between zero and
one and that it leaves the relative probabilities within aggregates unchanged.
This may prove useful for the solution of PDEs with similar restraints on the
solution, including, for example, mass fraction problems, where traditional
multigrid coarse grid corrections may produce under- and over-shoots.

The algorithm is shown to perform well compared to currently used algo-
rithms, obtaining performance improvements of up to three orders of magni-
tude on the problems selected.

Further work will include a more \multigrid-like" coarsening strategy and
prolongation operator which is more similar to an interpolation. In this
manner, it is hoped that the poor performance of the multilevel method for
homogeneously structured problems with very smooth solutions, which has
been observed, can be improved.
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